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Abstract

Multi-modal imaging systems have recently been drawing attention in fields such as medical imaging, remote sensing
and video surveillance systems. In such systems, estimating depth has become possible due to promising progress of
multi-modal matching techniques. In this article, we perform a systematic performance evaluation of similarity mea-
sures frequently used in the literature for dense multi-modal stereo-vision. The evaluated measures include Mutual
Information (MI), Sum of Squared Distances (SSD), Normalized Cross Correlation (NCC), Census Transform (CEN-
SUS), Local Self Similarity (LSS) as well as descriptors adopted to multi-modal settings like SIFT, SURF, HOG,
BRIEF and FREAK. We evaluate the measures over datasets we generated and compare the performances using the
“Winner Takes All” (WTA) method. The generated datasets are (i) synthetically-modified four popular pairs from
the Middlebury Stereo Dataset (namely, tsukuba, venus, cones and teddy), and (ii) our own multi-modal image pairs
acquired using the infrared (IR) and the Electro-optical(EO) cameras of a Kinect device. The results show that MI
and HOG provides promising results for multi-modal imagery and FREAK, SURF, SIFT and LSS can be considered
as alternatives depending on the multi-modality level and the computational complexity requirements of the intended
application.
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1. INTRODUCTION

Imaging systems of different modalities have been in use for a long time, especially in medical imaging [1, 2, 3,
4, 5, 6, 7] and remote sensing [8, 9, 10, 11, 12, 13]. In such systems, registration and/or fusion of such imagery is a
major concern since information from multiple modalities need to be combined for solving a task. However, this is
challenging since objects and surfaces look very different in different modalities.5

Recently, using multi-modal cameras for video surveillance systems has been growing in popularity [14, 15, 16,
17, 18]. Such multi-modal systems can combine information from multiple sources provided by different types of
sensors in order to get a more accurate and robust interpretation of an environment [16]. The type of sensors include
audio, thermal, infrared, vibration sensors etc. Especially, using bi-modal setups including visible and infrared/thermal
cameras has become quite prevalent in such systems since such combinations enable surveillance during not only10

daytime but also night-time, under low visibility or lighting conditions [19, 20, 21, 22]. Figure 1 shows sample
images taken from such bi-modal systems.
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Figure 1: Sample visible-infrared image couples from multi-modal imaging systems for surveillance applications. (a,b) Visible-SWIR image couple
(Source: [23]). (c,d) Visible-LWIR image couple (Source: [24]). (e,f) Visible-NIR image couple (Source: [25]).

Depth or the distance in surveillance systems is a very important source of information for the operator to better
interpret a scene or a behavior. Currently, this is achieved by an additional active system like a Laser Range Finder
(LRF) [19, 20, 21, 22] or photogrammetrically by making an assumption of average height of the target pedestrian, ve-15

hicle or even the vehicle tires detected on the sensor [15]. Alternatively, unimodal stereo-vision can be used provided
that there is an additional camera of the same modality.

It has been recently shown that a good alternative for acquiring depth in such surveillance systems is stereo-
vision from multi-modal camera pairs by several studies in the literature e.g. [18, 26, 27, 28, 29] and our previous
studies [25, 30]. The classical stereo-vision techniques are not applicable in such a multi-modal setting owing to the20

differences in corresponding pixels’ intensities, making the problem challenging (see Figure 1). However, there have
been many successful promising solutions to the problem - see Section 2.
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1.1. The Current Study

In this study, we provide a comprehensive analysis of different similarity measures used for dense multi-modal
stereo-vision in the literature. Our main contributions are the following:25

• A comprehensive analysis: In this study, a systematic performance evaluation of alternative similarity measures
frequently used in the literature for dense multi-modal stereo-vision is performed. To the best of our knowledge,
there is no such comprehensive study on multi-modal stereo-vision in the literature. On two datasets, the
measures are especially compared under different multi-modality and noise settings.

• Multi-modal stereo-vision datasets: MY: For the performance evaluation, two image datasets are compiled and30

provided online [31] and demonstrated for use as benchmark to similar studies via this study. Since, up to
the author’s knowledge, there are no dense multi-modal stereo-vision datasets available in the literature with
accurate ground truth information, which is considered as another important contribution of the study.

MY: The first dataset was generated by authors in [25] from four popular images in the Middlebury Stereo
Vision Page [32] (tsukuba, venus, cones and teddy) [33, 34]. The left images in this dataset are synthetically35

altered. The second dataset was generated by our several Kinect camera shootings composed of 24 stereo-
rectified image pairs. The Kinect devices [35] have a built-in Infrared (IR) (left) and Electro-optical (EO)
(right) camera along with an IR projector which has a built-in depth computation feature (see Section 4 for
details).

2. Uni-modal and Multi-modal Stereo-vision40

In this section, we first provide a summary of unimodal stereo-vision techniques, and then review the existing
multi-modal stereo-vision studies and the similarity measures available in literature.

2.1. Unimodal Stereo-vision

Stereo-vision [36, 37] deals with computing depth by finding the corresponding pixels in different views. The
correspondences, which are generally determined by comparing intensities of pixels, are used for computing the 3D45

positions using simple triangulation.
Stereo-vision is one of the most studied problems of computer vision - for reviews, see, e.g., [38, 33]. Stereo-

vision methods are mainly clustered around two main axes: Sparse or feature-based vs. dense methods; and, local
vs. global methods. In dense methods (e.g., [33, 39, 40]), stereo correspondences (and therefore the pixel disparities)
are computed for all the pixels in the images. On the other hand, sparse methods (e.g., [41, 42]) compute disparity50

information only for some reliable features extracted from images, such as salient points, edges, corners, curves etc.
Regarding the second grouping; local methods use only the local neighborhood information for finding stereo

correspondences. Dense methods performing a window-based matching over pixels in this neighbourhood are grouped
as local methods (e.g., [43, 44]). Sparse or feature-based methods can also be local (e.g., [38, 42, 45, 39]). Global
methods, on the other hand, use global constraints to correct wrong correspondences that are otherwise not possible55

locally (e.g., [46, 47, 48, 49]). Although computational complexity is much higher, significant improvements in the
accuracy of disparity maps can be achieved.

An important landmark for stereo-vision is the Middlebury benchmark by Scharstein and Szeliski [33] for com-
paring the current state of the art solutions to the problem. The dataset along with the performance evaluation of
many algorithms are provided by a web site [32]. With the Middlebury dataset, which includes scenes of different60

complexities with ground truth disparities, methods can be compared on different performance criteria. We believe
that a similar dataset and an evaluation framework for multi-modal stereo-vision is needed for similar benefits.

2.2. Multi-modal Stereo-vision

Although classical stereo-vision techniques have had tremendous success in terms of both accuracy and running
time, they are not directly applicable in a multi-modal setting. The reason is that computing similarities between65

intensities of pixels or windows will not work using unimodal matching methods simply because the intensities of
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the corresponding pixels will be different. For example, an RGB-thermal image pair would have totally different
intensities for corresponding pixels (see, e.g., Figure 1).

Multi-modal stereo-vision is defined as performing stereo-vision using two camera pairs of different modalities,
for instance an infrared-visible camera pair which has not been studied much until 2000s. The earliest of such studies,70

to the best of our knowledge, is from Egnal [43], who, affected from Viola’s studies of multi-modal registration [50],
applied mutual information (MI) as the basic similarity measure for stereo correspondence. Egnal tested his method
both on unimodal images and also on red / blue filtered, multimodal (an NIR and Visible/NIR image couple) and
differently lighted images and compared to a modified NCC algorithm as a baseline. The results were promising in
that they demonstrated MI’s power compared to standard methods, based on correlation, especially on images with75

spectrally distinct characteristics for the same scene. However, using MI still produced low quality results compared
to what multi-modal stereo vision techniques can produce.

Fookes et al. enhanced the approach based on MI with adaptive windowing [51] and added prior probabilities to
the method using a 2D matching surface [52]. A 2D matching surface is simply formed by computing MI costs for
every possible combinations of left and right pixels. From the 2D matching surface, first, the maximum of a row is80

found. The maximum is compared to all the costs on the same column; if it is also the maximum of the column, then
it is determined as a valid match. This is claimed to enforce left-right and uniqueness constraints. Prior probability
incorporation is performed by computing a joint histogram from all the intensities in the stereo image pair and using
this as prior probabilities added to the joint probability of matching windows along with a weighting constant. The
results were taken from unimodal images altered synthetically by negative, solarized, posterized or simulated by85

(cos(π f (I)/255)255) versions of one of the image pairs, where

f (I) =

{
0 if I < 0
I otherwise, (1)

and compared to results from NCC and rank transform where MI outperforms all these methods.
This study is important for showing that stereo-vision results using MI could be significantly enhanced when

combined with other state-of-the-art stereo-vision techniques. However, the results were taken only from unimodal
images that were altered synthetically, which do not provide distinct characters of segments or edges that multi-modal90

images may have.
Another notable work on multi-modal stereo vision is by Krotosky and Trivedi [18, 26, 53], who studied pedes-

trian detection and tracking using mutual information via an infrared-visible camera pair. They established stereo
correspondence using mutual information within region of interests (ROI) comprised by human body silhouettes, and
proposed a method using disparity voting enabling computation of depth information for the corresponding regions95

which is a significant restriction. Finally, this depth information is used to accurately register the multi-modal images
for the ROIs.

An extension of how MI can be used for stereo-vision was proposed by Barrera et al. [54], who integrated the
gradient information and also a scale-space analysis into MI calculation and performed an evaluation of the proposed
similarity functions. In their study, a multi-modal stereo rig (with thermal and visible cameras) was developed and100

images taken from this setup were used. However, the evaluation dataset did not contain accurate ground truth data
and they used image scenes comprised of planar surfaces to perform the evaluation in the v-disparity space. They
conclude that MI is a powerful method for multi-modal stereo vision and adding gradient and the scale space analysis
increases the accuracy of MI. However, their evaluation method was limited to only the planar surfaces fitted to
calculated disparities due to unavailable ground truth data and does not cover scenes with objects of several shapes,105

sizes, curvature and obscuring objects. In their next study, [27], the IGSS method, which is defined as MI integrated
with gradient and scale space analysis is further analysed. The results they presented in this work show that generated
3D depth data are quite sparse considering the tested scenes. Nonetheless, their studies are promising since they show
that stereo-vision is possible from images with very distinct spectral bands from thermal and visible range of the
electromagnetic spectrum.110

Recently, a measure, called Local Self Similarity (LSS), originally proposed for image template matching [55], has
been applied as a thermal-visible stereo correspondence measure by Torabi and Bilodeau [28]. In their study, the focus
was on ROI-based image matching and they tried tracking people in the scene using their silhouette. They compared
LSS against MI-based similarity descriptors. In their first publication [56], they showed that LSS outperformed MI
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and HOG (Histogram of Oriented Gradients) measures. Later, they used LSS measure in an energy minimization115

framework, enhancing the results compared to their previous work [57]. However, in 2014, Bilodeau et al. [29]
showed for the problem of thermal-visible registration of segmented human silhouettes that MI performs better than
LSS and other alternative descriptors. Note that, unlike our article, the focus of the analysis by Bilodeau et al. [29]
was on thermal-visible registration of human silhouettes. In fact, in our article, we show that, due to the nature of the
problem, different performance characteristics are observed in multi-modal stereo-vision. Namely, we show that MI120

is still better than LSS unlike the results provided by Bilodeau et al. for even smaller window sizes. Moreover, HOG
also outperforms LSS in multi-modal stereo-vision although more vulnerable to noise.

3. Similarity Measures for Multi-Modal Stereo-vision

In this section, the similarity measures used as multi-modal stereo correspondence measures in the literature are
described in detail. The performances of these similarity measures are evaluated in the article.125

3.1. Sum of Square Distances - SSD

SSD is a basic similarity measure used in stereo-vision [38, 33, 58]. It is simply composed of computing the sum
of squares of intensity differences of the pixels in the two candidate windows, WL and WR. Namely:

S S D(WL,WR, d) =
∑

x,y∈WL;x′,y∈WR;

(
Il(x, y) − Ir(x′, y)

)2 , (2)

where WL is the local window around a center pixel (xc, yc) in the left image L; WR is a candidate window from the
same row yc in the right image for disparities d ∈ [0, dmax] and x′ = x − d for all x ∈ WL.130

3.2. Normalized Cross Correlation (NCC)

NCC is a classical similarity measure widely used in stereo vision [38, 33, 58]. In NCC, the pixel-wise cross-
correlation of the two matching windows are computed and normalized by the overall intensity difference. NCC
similarity measure is defined as follows:

NCC(WL,WR, d) =

∑
x,y∈WL;x′,y∈WR

(Il(x, y))(Ir(x′, y))√∑
x,y∈WL;x′,y∈WR

(Il(x, y))2(Ir(x′, y))2
, (3)

where WL is a local window round a center pixel (xc, yc) in the left image L; WR is a candidate window from the same135

row yc in the right image for disparities d ∈ [0, dmax] and x′ = x − d for all x ∈ WL. NCC has been tested as the basic
similarity measure in several multi-modal stereo-vision studies [29, 43, 56].

3.3. Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) was proposed by Lowe [59] for object detection. The method generates
sets of descriptive features from images that are claimed to be invariant to rotation, scaling and partial changes in140

viewpoint and illumination. The method has drawn significant attention since 2004 and become very popular for
detection, recognition and retrieval problems.

The method is composed of four major steps [59]; Scale-space extrema detection, Accurate Keypoint Localization,
Assignment of Orientation and Generating the Local Descriptor. The method generates local descriptors at the salient
points detected by the process that starts by computing image gradients and orientations around the local region of145

each keypoint. Next, the gradients and orientations are weighted by a Gaussian function with the σ of the Gaussian
as the half of the descriptor window determining the 2× 2 or 4× 4 subregions around the keypoint. The gradients and
orientations are accumulated within these descriptor windows where the orientations are binned to 8 directions within
each subregion using the gradient values.

In this article, SIFT descriptors are generated for each pixel while evaluating stereo correspondence.150
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3.4. Speeded-Up Robust Features (SURF)

The Speeded-Up Robust Features (SURF) was proposed by Bay et al. [60] as a faster alternative to SIFT with com-
parable performance. The method uses the Hessian for localization. Scale space analysis is performed by up-sampling
the box filters instead of down-sampling the image. Haar-wavelet responses are computed in x and y directions in a
circular neighborhood of the interest points for achieving rotational invariance.155

In SURF, a descriptor vector is generated by constructing a square region around the interest point oriented in the
dominant orientation. This square region is split into 4 × 4 subregions of 5 × 5 pixels. The wavelet responses along x
and y directions (dx, dy) are summed up over each subregion. The absolute values of the responses (|dx| and |dy|) are
also summed. Therefore, the feature vector is comprised of v = (

∑
dx,

∑
|dx|,

∑
dy,

∑
|dy|) for each subregion which

yields in total a 4 × 4 × 4 = 64-sized descriptor vector. The descriptor vector is normalized for invariance to contrast160

changes.
Similar to SIFT, in this article, SURF descriptors are generated for each pixel for evaluating stereo correspondence.

3.5. Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) is a descriptor proposed by Dalal and Triggs [61] for human detection.
It was first used by Torabi and Bilodeau [56] in a multi-modal setting where they compared LSS against HOG for165

human ROI detection in thermal-visible stereo image pairs.
The method first divides the image window at the center pixel q into a grid of cells. Each cell accumulates the

local 1-D histogram of gradient directions. For robustness to illumination effects, blocks composed of several of these
cells accumulate the local histograms and they are used for normalization of local cells. The normalized descriptor
blocks are called Histogram of Oriented Gradients (HOG). The HOG descriptors of each pixel in a local detection170

window are then be combined to have a feature vector. Formally, computation of a HOG descriptor can be described
as follows:

HOGq(k) =
∑

(x,y) ∈ Wq

T
(
Θ(x, y)
γ

)
, (4)

where HOGq(k) corresponds to kth bin in the histogram with K bins, Θ(x, y) is the gradient at pixel (x, y), γ is a scaling
constant and T () is defined as:

T (u) =

{
1 if u = 0
0 otherwise. (5)

3.6. Local Self-Similarity (LSS)175

Local self similarity (LSS) is a similarity measure proposed initially by Shechtman and Irani [55] for image
template matching. The method simply extracts a small patch (e.g., 5 × 5) from the center pixel q of a larger window
(e.g., 40 × 40 ) and the sum of squared distances (SSD) between the small patch and the surrounding larger region is
computed. Next, the SSD costs are normalized by maximum variance of difference of small image patches (σauto(q)))
and a noise term (σnoise) generating a correlation surface S q as follows:180

S q(x, y) = exp
(
−

S S Dq(x, y)
max(σnoise, σauto(q))

)
. (6)

Finally, the LSS descriptor is then the partitioned log-polar representation of this surface S q() using 20 angles and
4 radial intervals, giving 80 bins.

Torabi and Bilodeau introduced the LSS measure for ROI-based image matching for human tracking and comput-
ing the depth of the human ROI in thermal-visible image pairs [28, 57]. In their recent studies on image registration,
they compared this measure with other similarity measures like MI, HOG, Census, SIFT, SURF, BRIEF, FREAK etc.185

[56, 57] where LSS was successful for the smallest window size that was tested but MI was still outperforming LSS
for the other larger window sizes.
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3.7. Binary Robust Independent Elementary Features (BRIEF)

BRIEF is a descriptor proposed by Calonder et al. [62] based on encoding visual information as binary strings
over an image patch. The method is composed of three steps:190

• A sampling grid of points in a defined pattern is placed around the region of the pixel of interest.

• A list of pairs of points from the sampling grid is constructed.

• A binary string is encoded from the intensities of the sampling pairs. The intensities are first smoothed using
Gaussian kernels in order to be robust against noise.

The binary string is encoded using the T function as in Eqn. 7, for an image patch p of size S xS :195

T (p; x, y) =

{
1 if p(x) < p(y)
0 otherwise (7)

For constructing the sampling grid and computing the sampling pairs (x, y), a number of methods were proposed in
[62]:

• (G I): Points are evenly distributed, pairs are randomly selected.

• (G II): Points are sampled using a Gaussian distribution and pairs are randomly selected from this distribution
of points, which means points near the center are preferred.200

• (G III): The first location x is sampled from a Gaussian centered around the origin, the other point is sampled
from another Gaussian centered around the x, which creates more local pairs.

• (G IV): A coarse polar grid is used and pairs are randomly selected from this grid.

• (G V): A coarse polar grid is used and pairs are selected as x = (0, 0) at the origin and y is randomly selected.

The Hamming distance [63] is used to compare the encoded binary strings which is defined as:205

Hamming(s1, s2) =

N∑
i=0

Th(s1(i), s2(i)), (8)

where Th function is defined as:

Th(c1, c2) =

{
1 if c1 , c2,
0 otherwise, (9)

where s1 and s2 are the two binary strings to be compared, s(i) corresponds to the ith bit in the string s.
BRIEF was used as one of the methods to compare against alternative measures in Bilodeau et al., [29], for human

ROI detection in thermal-visible stereo image pairs.

3.8. Fast Retina Keypoint (FREAK)210

FREAK is yet another descriptor proposed recently by Alahi et al. [64]. Similar to BRIEF, FREAK is a binary
descriptor. Like BRIEF, the binary strings are generated over a sampling grid, but the difference of FREAK is that the
sampling grid is inspired from the human visual system and the spatial arrangement of receptor cells in the retina.

Using a sampling grid similar to receptive fields, a binary descriptor is constructed by first pairing the receptive
fields and then thresholding the difference between the receptive fields, as below, as a sequence of one-bit Difference215

of Gaussians (DoG):
FREAK =

∑
0≤a<N

2aT (Pa), (10)
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where function T is defined as:

T (Pa) =

{
1 if I(Pr1

a ) − I(Pr2
a ) > 0

0 otherwise, (11)

and Pa is the pair of receptive fields, N is the size of the descriptor binary string.
In order to select the pairings, a learning phase is performed over the data which yields automatically a coarse-

to-fine ordering of DoGs similar to human vision system. Later at the recognition step, matching is performed at220

several stages: initially first 16 bits are compared, after locating the candidate matchings a more detailed search is
performed over the rest of the string. This mechanism is also claimed to mimic how the human visual system performs
recognition [64].

The Hamming distance [63] is used to compare the encoded binary strings as given in Eqn. 8. FREAK was used
as one of the methods to compare against alternative measures in Bilodeau et al. [29] for human ROI detection in225

thermal-visible stereo image pairs.

3.9. Mutual Information (MI)

Mutual information (MI), proposed by Shannon [65], is a measure for the information content of received data
over a random variable x having the probability distribution p(x).

In his study, Shannon defined the mutual information using the concepts of entropy (H(x)), joint entropy (H(x, y))230

and conditional entropy (H(x|y)) as:

MI(x, y) = H(x) − H(y|x) = H(y) − H(x|y) = H(x) + H(y) − H(x, y). (12)

Mutual Information (MI) is defined as the subtraction between the information needed to describe x alone and the
additional information required to specify y given x, which corresponds to the reduction in the information content of
x given that y is known.

An alternative definition of MI uses Kullback-Leibler distance measure [66], which measures the additional infor-235

mation required for defining x using another approximating distribution q(x) instead of p(x) which is assumed to be
unknown:

KL(p‖q) = −
∑

x

p(x) log
(

q(x)
p(x)

)
. (13)

Egnal [43] is the first to use mutual information for multi-modal stereo correspondence. Later, many others
followed using mutual information for multi-modal stereo-vision [27, 51, 52] and related problems such as human
ROI tracking on multi-modal stereo image pairs [18, 26, 29, 53].240

3.10. Mutual Information with Prior Probabilities (MI(wPR))

Incorporating prior probabilities to MI calculation was proposed by Fookes et al. [52] for multi-modal image
matching and stereo correspondence. The aim is to increase the statistical discriminability of joint probability calcu-
lation of the two local matching windows. In order to accomplish this, joint prior probabilities computed from the
whole images are added to the local joint probability calculation.245

MI can be calculated from the two local windows WL and WR extracted from the left image L and right image R
as:

MI(WL,WR) =
∑

Il∈WL

∑
Ir∈WR

P(Il, Ir) log
P(Il, Ir)

P(Il)P(Ir)
, (14)

where P(Il, Ir) corresponds to joint probability for the left and right image patches WL and WR, P(Il) and P(Ir) are the
marginal probabilities of the pixel intensities that can be computed by constructing a joint histogram.

In MI(wPR), the MI formulation is changed slightly as follows:250

MI(wPR)(WL,WR) =
∑

Il∈WL

∑
Ir∈WR

P(Il, Ir) log
P∗(Il, Ir)

P(Il)P(Ir)
, (15)
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where P∗(Il, Ir) can be defined as:

P∗(Il, Ir) = λP(Il, Ir) + (1 − λ)Pprior(Il, Ir), (16)

where Pprior(Il, Ir) is the joint prior probability computed from the joint histogram of the whole images as:

Pprior(Il, Ir) =
hist(Il, Ir)∑

l′,r′ hist(Il′ , Ir′ )
, (17)

for all corresponding pixels Il in left image L and Ir in right image R. λ in Equation 16 corresponds to the degree
of incorporating priors into the joint probability. This modification to MI calculation was shown to increase the
performance of MI as a similarity measure in stereo correspondence problem in [52].255

3.11. Census Transform (CENSUS)

Census Transform, proposed by Zabih and Woodfill [67], is a non-parametric local transform. The method simply
uses relative ordering of pixel intensities in the image patch over the center pixel and transforms it into a binary
encoded string as the descriptor. Formally, for a window Wu at a pixel u, the descriptor is determined as follows:

C(Wu) = ⊗ T (Wu; u, v), (18)

where v a neighboring pixel in Wu, ⊗ is the concatenation operation and the T () is defined as:260

T (Wu; u, v) =

{
0 if Wu(v) < Wu(u)
1 otherwise. (19)

In other words, the neighbor pixels are checked if their value is greater than the center pixel, which leads to a 0 in the
binary string and 1 otherwise if smaller. The descriptor is then the composition of these binary values.

Since the feature vector is binary, the Hamming distance [63] is used to compare two feature vectors as given in
Eqn. 8, like other binary encoded string based similarity measures i.e., FREAK and BRIEF.

4. DATASETS AND PERFORMANCE EVALUATION265

Two types of datasets are collected and used in this study: (1) A dataset with synthetically altered stereo image
pairs from the Middlebury Stereo Evaluation Dataset [68], and (2) visible and infrared image pairs captured from a
Kinect device [35]. The datasets are available publicly at [31].

4.1. Dataset #1 - The Middlebury Dataset

This dataset contains the four popular image pairs (Tsukuba, Venus, Cones and Teddy) from the Middlebury270

Stereo Evaluation Dataset [68]. The left images in the dataset are altered synthetically by using a cosine transform
((cos(π f (I)/255)255) where f (I) is defined by Equation 1 ) of pixel intensities just as Fookes et al. did [52]. Table
1 provides the list of the image pairs that comprises the dataset along with several properties of the stereo images.
Figure 2 presents the image pairs generated and used in the experiments.

Note that, in the left images, important details are lost and some segments are merged due to the cosine transform275

and the truncation to 8-bit unsigned integer of the result. This alteration enabled us to simulate the challenge of
matching IR and EO images. On the other hand, the negative, solarized and posterized versions of the images could
be used, however, these transformations was only changing the intensities not the edges and segments of the images.

This dataset is important since (i) it is possible to evaluate the performance of the methods thanks to the ground
truth and (ii) it allows us to see the state of the multi-modal stereo-vision methods compared to that of uni-modal280

stereo-vision methods.
In the experiments, the “all” regions provided by the Middlebury page [68] is used by clipping the specified regions

for which matching cannot be performed. In addition, regarding the window-based methods, half of the used window
sizes at the borders are also discarded when computing performance statistics for a fair comparison between methods.

9



Table 1: The Dataset #1 - Synthetically Altered Middlebury Stereo Evaluation Dataset.

Dataset Image Image Resolution Max.
No Name Disparity

Dataset #1 1 Tsukuba 384×288 15
Dataset #1 2 Venus 434×383 19
Dataset #1 3 Teddy 450×375 59
Dataset #1 4 Cones 450×375 59

Figure 2: Tsukuba, Venus, Teddy and Cones stereo pairs from the Middlebury Stereo Vision Page - Evaluation Version 2 [68]. 1st column:
Synthetically altered left images. 2nd column: The right images ((grayscale)). 3rd column: The ground truth disparities. 4th column: The “all”
regions where evaluations are performed, (Only “white” pixels are included in performance evaluation.) Note that, in the left images, important
details are lost due to the cosine transformation.

See Figure 2 (rightmost column) for the “all” regions in accordance with the Middlebury page [68], where the white285

pixels show the region that the performance evaluations are performed.
Performance on Dataset #1 is evaluated using two types of metrics: (i) the Root Mean Square (RMS) distances

between estimated and ground-truth disparities, and (ii) the Percentage of Bad Pixels (BAD), which is the percentage
of pixels for which the estimation error is greater than a threshold δd. As suggested in Middlebury Stereo Vision
Evaluation Page, δd is set to 1.5. These metrics can be formally defined as follows [33]:290

RMS =

√
1
N

∑
(x,y)

|dC(x, y) − dT (x, y)|2, (20)
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BAD =
1
N

∑
(x,y)

(|dC(x, y) − dT (x, y)| > δd) , (21)

where dC(x, y) is the computed disparity map, dT (x, y) is the ground truth disparity map, δd is the error threshold (=
1.5), N is the number of pixels being evaluated.

4.2. Dataset #2 - The Kinect Dataset

The Kinect dataset contains infrared (left) and visible (right) images captured from a Kinect device. The Kinect295

Device was introduced by Microsoft for the Xbox 360 game console [69] which enabled the user use his/her own
body as the game controller. As shown in Figure 3, the device has a built-in EO camera and an infrared camera and
projector couple. The infrared projector sends beams to the scene and the beams are sensed on the infrared camera
which enables the device to generate a 3D depth map of the scene where the intention is the human body.

Figure 3: The Kinect Device having a built-in camera, sensors and features.

To be able to use the built-in infrared and visible camera images for multi-modal stereo-vision, the images need300

to be rectified so that the epipolar constraint holds. We use the method by Zhang et al., [70], for calibration of the
cameras 1.

See Figure 4 for an overview of the process, with sample chessboard images taken by the Kinect infrared and vis-
ible cameras, the detected chessboard grid points for the computation of the rectification parameters and the achieved
stereo rectification results.305

Using the Kinect device and the process described above, a stereo vision evaluation dataset composed of infrared
and visible image pairs is constructed. For this purpose, several scenes of indoor environments (office, living room,
shelves) with several objects having different reflectance properties are prepared and recorded by the infrared and
visible cameras of the device. The images are stereo-rectified. See [31] for the dataset.

For comparing the performances of the similarity measures, all 24 image pairs in this dataset are used in the scope310

of this study. See Figure 5 for sample four image pairs from the dataset.
Performance evaluation on the Kinect dataset is performed by using depth data that Kinect provides. The accuracy

of native Kinect depth data was already evaluated by several studies [71, 72]. Disparity information is computed from
the depth data by inversing the disparity to depth computation over epipolar-rectified images [70] as:

[x y dk(x, y) w]T = Q−1 × [X Y Zk(X,Y) 1.0]T (22)

where (x, y) represents the column and row of one pixel, dk is the disparity value at the corresponding pixel along with315

the scaling constant w. The Kinect depth value at (X,Y) coordinate is at ZK distance from the camera. The Q matrix

1For both calibration and rectification, we use the calib3d module in OpenCV.
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Stereo-
rectification

Raw Image 
Couple

Rectified 
Image Pairs

Figure 4: Depiction of the Kinect calibration process

Figure 5: Sample image pairs from Dataset #2 - Kinect Dataset 1st column: Left (IR) camera images. 2nd column: Right (EO) camera images. 3rd
column: Kinect’s native depth maps (brighter pixels have more depth). 4th column: Disparity maps
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is the perspective transformation matrix from disparity to depth which is constructed as:

Q =


1 0 0 −cx

0 1 0 −cy

0 0 0 f
0 0 −1/b (cx − c′x)/b

 , (23)

by using the calibration parameters, f the focal length, b the stereo baseline, (cx, cy) and (c′x, cy) are the principal
points.

Performance evaluation on Dataset #2 is also performed using the same two types of metrics, RMS and BAD as320

defined for Dataset #1. The computation is performed only on the pixels that have a valid depth (∀(x, y) s.t. ZK(x, y) ∈
(0.0, 5.0]) since Kinect native depth estimation may fail on edges and non-fronto-paralel surfaces due to insufficient
reflectance of infrared beams on such surfaces (See Figure 5).

5. COMPARISON OF SIMILARITY MEASURES FOR MULTI-MODAL STEREO-VISION

In this section, the descriptors and the similarity measures that are widely used in the literature (see Section 3) are325

compared using the datasets that were generated in the scope of this study (see Section 4).
The evaluated methods can be grouped into three categories similar to [29]:

1. Local Window-Based Measures: These methods calculate the measures by using local windows extracted
around the compared pixels from the left and the right images. The SSD, NCC and MI (with and without Prior
Probability) measures fall into this category - see Section 5 for details.330

2. Measures based on non-binary feature descriptors: These methods are composed of initially calculating
feature vectors densely for each pixel. The LSS, HOG, SIFT and SURF fall into this category. To compute the
stereo correspondences, a similarity measure using the sum of distances of each corresponding feature vector
of the pixels within the local windows around the matching left and right image pixels are used:

S M(WL,WR) =

√∑
x,y

( fL(x, y) − fR(x, y))2, (24)

where fL and fR are the feature vectors of each pixel in the two matching windows WL and WR.335

3. Measures based on binary features: These methods are based on binary descriptors for each pixel. CEN-
SUS,BRIEF, FREAK features are used under this category. Hamming distance of the matching windows are
applied to the binary descriptors as the similarity measure (see Eqn. 8).

5.1. Performance Evaluation Using Dataset #1 - The Synth. Alt. Middlebury Dataset

In this section, the performance evaluation of the similarity measures are performed using the Dataset #1 - The340

Synthetically Altered Middlebury Dataset. After computing the similarity measures for the matching pixels, the
“WTA” (Winner-Takes-All) disparities are computed by selecting the best disparity having the maximum similarity
value over candidate disparities. The performance evaluations are performed as described in Section 4.

Three different experiments are conducted in the scope of this section, as provided in the following subsections:
(i) Effect of window size: First, the measures are tested using three different window sizes, 9×9, 21×21 and 31×31.345

This range enabled us to evaluate the performances in small, medium and bigger window sizes which might affect
the results for comparison. (ii) Effect of multi-modality: Next, the measures are tested for different multi-modality
levels of the left image. (iii) Effect of noise: Finally, several levels of Gaussian noise are added to the left image and
the measures are tested for increasing noise levels.

Table 2 provides the parameter settings used in the experiments for each of the method tested where the default350

parameters are used.
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Table 2: Parameter setting used for the evaluated similarity measures
Method Name Parameter Name Value
MI(woPR) binsize(hist) 40
MI(wPR) λ 0.3

LSS
size(smallpatch) 5
size(largepatch) 41

num(angles) 20

HOG

K 9
γ 1

size(detectionwindow) 16
size(cells) 8

SIFT

σ 3
num(octaves) 4

num(octaveintervals) 3
size(descriptor) 128

SURF

σ 3.3
num(octaves) 4

num(octaveintervals) 2
size(descriptor) 64

CENSUS size(window) 3
size(descriptorstrbits) 8

BRIEF

size(descriptorbits) 32
size(patch) 48
size(kernel) 9

gridtype GIV

FREAK

num(octaves) 4
num(scales) 64
num(pairs) 512

num(oripairs) 45

5.1.1. Effect of Window Size
In this part, we evaluate the effect of the window size on the performance of the methods. We use three different

window sizes, 9× 9, 21× 21 and 31× 31 (corresponding to a small, medium and a large window, respectively), for the
similarity measure computations to perform the evaluation. The results are provided in Figures 6(a) and 6(b) which355

show the average RMS and BAD metrics for the “all” regions respectively. See Figure 7 for sample visual results on
the Tsukuba image for the leading similarity measures.
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Figure 6: Average RMS (a) and BAD (b) errors of the methods. The “WTA” performances in “all” regions for three different window sizes for
Dataset #1 are considered.

It can be observed from the results that the average RMS and BAD pixel percentage errors are smallest for the
MI(wPR) and MI(woPR) similarity measures, which shows that incorporation of the prior probabilities enhanced the
results of MI measure. HOG is ranked right after the MI measures, which indicates that using gradient information360

in a multi-modal setting is a good alternative. LSS and SIFT are following these measures. On the other hand, the
similarity measures SURF, CENSUS, BRIEF, FREAK, NCC and SSD totally perform worst in this dataset since they
fail to capture similarity in the multi-modal intensities.
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Figure 7: Sample visual results of the leading similarity measures for the synthetically altered Tsukuba image pair in Dataset #1, for the different
window sizes 9x9, 21x21 and 31x31 pixels.
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The results are analysed for the effect of local window sizes used for computing the similarity measures. It is
observed that, as the size of the window increases, the performances of the similarity measures also increase except365

for the ones that totally fail (i.e. SURF, CENSUS, BRIEF, FREAK, NCC and SSD). However, for the measures
that do not fail and can represent multi-modal image patches to some extent (i.e. MI, HOG, LSS, SIFT), the rate
of increase in the performance degrades at each enlarged window size. On the other hand, especially for teddy and
cones images, having bigger and more curved objects, the methods are affected more by the local window size (results
not provided here). HOG is affected less than all other measures (excluding the failed measures) by the window size370

where it provides best result in average for the smallest window size 9 × 9. This is because of the similarity measure
computing method in which an inner window is used to compute each feature vector for each pixel in the compared
local window yielding a greater window in total. MI measures are affected significantly for the window size, as all the
computation is performed within the extracted window of pixels.

5.1.2. Effect of Multi-Modality375

In this part, we evaluate the methods for their resilience against multi-modality. To accomplish this task, we
generate stereo pairs of different multi-modalities as follows:

Im(x, y) = (1 − m) × Iorig(x, y) + m × Icos(x, y), (25)

where Iorig is the original image from the Middlebury Image Database, Icos is the cosine transformed image (Icos =

(cos(π f (Iorig)/255)255), f (I) is defined in Equation 1) and m ∈ [0, 1] is the multi-modality level of Im. Therefore,
when m = 1 (full multi-modal), Im is equal to Icos and when m = 0 (no multi-modal), Im is equal to Iorig. See Figure 8380

for an illustration.

Figure 8: Figure illustrating the method for generating images of different multi-modality. m: the multi-modality level scale (m = 0.5 in this case);
Left image: Original Tsukuba image from Middlebury image database; Middle image: Cosine transformed image; Right image: Generated image
of multi-modality level m = 0.5.

The experiments presented in this section performed by testing the similarity measures for 10 multi-modality
levels. The local window size is set to 21 × 21 pixels. Figures 9(a) and 9(b) show the average RMS and BAD
pixel percentage errors corresponding to the 10 multi-modality levels of the stereo image pairs in the Dataset #1,
where m = 0 stands for the original left image in the Middlebury image database and m = 1 stands for the cosine385

transformed left image in Dataset #1. See Figure 10 for sample visual results corresponding to the disparity maps
generated for different multi-modality levels by leading similarity measures.
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Figure 9: Average RMS (a) and BAD percentage (b) errors of all methods for 10 multi-modality levels for the Dataset #1 image pairs.

18



m=0.9 m=0.6 m=0.3 m=0
Altered Left (IR) images

MI (woPR)

MI (wPR)

HOG

LSS

SIFT

FREAK

Figure 10: Sample visual results of selected similarity measures for given multi-modality levels (m=0.9, m=0.6, m=0.3 and m=0) of the Tsukuba
image pair (local window size=21x21). 1st row shows altered left images of given multi-modality levels).
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As can be observed from the results, the similarity measures are clustered into three groups. The 1st group is
MI(woPR), MI(wPR) and HOG where multi-modality does not have a significant effect. The 2nd group includes LSS
and SIFT, which present moderate effect for the multi-modality. LSS makes a peak at the m = 0.3 level, which is due390

to the disappearance of some of the spatial features at this level. The 3rd group includes the other methods (SURF,
CENSUS, BRIEF, FREAK, NCC and SSD). Among these, SURF, FREAK, CENSUS and BRIEF have good results
only before m = 0.3 level, and NCC before the m = 0.2 level. As expected, SSD is affected the most by multi-modality
but it yields reasonable results at and before m = 0.

5.1.3. Effect of Noise395

In this part, we evaluate how the methods are affected by noise. To accomplish this, a noisy image is generated
using:

Inoisy(x, y) = Icos(x, y) + N(x, y; µ, σ). (26)

where N() is the Gaussian noise with mean µ = 0 and standard deviation σ.

(a) (b)

(c) (d)

Figure 11: Different noise levels applied to left Tsukuba image in Dataset #1. (a) Noise level n = 10 (σ = 20.0) (b) Noise level n = 6 (σ = 12.0)
(c) Noise level n = 3 (σ = 6.0) (d) Noise level n = 0 (σ = 0.0) the noiseless cosine transformed left image.

The left images are added noise by changing the σ in the range [20.0, 0.0]), which is analyzed in 10 noise levels
n = 0, .., 10, with increments of 2.0: n = 0 means no noise. For the experiments, window sizes are fixed to 21 × 21400

pixels. See Figure 11 for the sample images with decreasing noise levels. Figures 12(a) and 12(b) show the average
RMS and BAD errors for the 10 noise levels on the left images of Tsukuba, Venus, Teddy and Cones pairs where
n = 0 stands for the noiseless left image. See Figure 13 for sample visual results for the disparities generated by some
similarity measures.
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Figure 12: Average RMS (a) and BAD (b) errors of all methods for 10 noise levels for the Dataset #1 image pairs.
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Figure 13: Sample visual results of some similarity measures for the added noise levels to Tsukuba left image in Dataset #1 (local window
size=21x21) (noise levels: n = 10, n = 6,n = 3 and noiseless n = 0)

As can be observed from the obtained results, SIFT and HOG are concluded as the most vulnerable measures to405

noise. MI (woPR) also increase the performance as noise is decreased. MI(wPR) is concluded as the most robust
method to noise. On the other hand, LSS is not affected by noise and even has a small shift in error upwards. It is
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concluded that this behavior was due to the small increase in spatial correlation of homogeneous segments due to
added noise. Other measures which are already shown to fail for multi-modal image pairs does not respond well to
added noise as well.410

5.2. Performance Evaluation Using Dataset #2 - The Kinect Dataset

In this section, the methods are compared using Dataset #2 - The Kinect Dataset. Same as the Dataset #1, the
experiments are performed using the “WTA” (Winner Takes All) disparities and RMS and BAD metrics are applied
using ground truth disparity maps computed from the Kinect native depth maps as described in Section 4.2. Since the
Kinect images have higher resolution, the three window sizes of 31× 31, 41× 41 and 51× 51 are used. Regarding the415

similarity measures, the same parameters that was used in Dataset #1 are used (see Table 2).
Figure 14, Figure 15(a) and Figure 15(b) show the resultant RMS and the BAD metrics computed for similarity

measures for all 24 image pairs in Dataset #2 (See 5.2 for the description of the metrics). The BAD metrics are
computed for two different disparity error thresholds δ = 1.5 and δ = 2 disparities.
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Figure 14: Average RMS errors of all methods for the Dataset #2 image pairs (using three different window sizes, 31x31, 41x41, 51x51 pixels.)
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Figure 15: Average BAD errors of all methods for disparity error threshold (a) δ = 1.5 (b) δ = 2.0 for the Dataset #2 image pairs.

Figure 16 and Figure 17 show sample visual results of generated disparities for the dataset images for all the420

similarity measures tested.
Experiments over the Kinect infrared-visible image pairs show that the leading measures MI, HOG, SIFT and

LSS over the Dataset #1 still provide good results for Dataset#2. However, SURF and FREAK perform even slightly
better than these measures for this dataset. This is due to the low multi-modality between Near-Infrared and Visible
image pairs where cloth textures and monitors behave most different than the rest of the scene objects. Kinect Near-425

Infrared images correspond to reflection properties of objects around 830nm wavelength of electro-magnetic spectrum
where visible images include reflection properties up to 700nm wavelength which is close. This also can be observed
by inspecting the multi-modality experiment results on Dataset#1 (see Figure 9(b)) where almost all the measures
perform well until m = 0.3 level except for the NCC and SDD as expected. On the other hand, when the visual
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Figure 16: Visual results for Dataset#2-Img#2 showing the computed WTA disparities of the similarity measures tested for the kinect image pair
and kinect disparity given in 1st row and results in the following rows.
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Figure 17: Visual results for Dataset#2-Img#10 showing the computed WTA disparities of the similarity measures tested for the kinect image pair
and kinect disparity given in 1st row and results in the following rows.).
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results are analysed, the MI measures can be taken as still more preferable to the rest of the measures since they430

capture the shape of the objects in the scene with better edges and surfaces. Finally, it should be noted that none of the
measures are better than 40% regarding the BAD metric, which makes us conclude that there is still significant space
for improvement of WTA results of these measures over Near-Infrared and Visible image pairs.

5.3. Comparison of Computational Costs
In this section, the similarity measures are compared on their computational costs which is one of the important435

concerns in choosing a similarity measure. As mentioned in the beginning of this section, the evaluated measures
are grouped into three categories, (i) Local Window Based Measures i.e. SSD, NCC, MI with and without Prior
Probability, (ii) Measures based on non-binary feature descriptors i.e., LSS, HOG, SIFT and SURF and (iii) Measures
based on binary features i.e., CENSUS, BRIEF and FREAK.

From the computational complexity point of view, the measures can first be regrouped as the ones that need a440

Precomputation phase before the Similarity Value Computation phase and the ones that do not. All the measures that
use binary or non-binary feature descriptors need a precomputation phase to compute the features to later compute
similarity values by the extracted windows of these feature maps generated from left and right image couples for a
candidate disparity value. CENSUS is an exception since its implementation requires computing the census informa-
tion from the extracted window of each image couple corresponding to a candidate disparity similar to MI measure.445

Besides, MI with Prior Probability method needs first to compute joint probability of intensities for the image pairs
globally for all the pixels.

The similarity value computation phase include computing similarity values for each corresponding left and right
image pixels Il(x, y) and Ir(x − d, y) for the candidate disparities d ∈ [0, dmax]. This enables the final ”WTA - Winner
Takes All” selection of best disparities which have the maximum similarity value to generate a dense disparity map450

for the image scene. At this phase, the Local Window Based Measures directly compute the similarity value using
the extracted windows by nature. The computational complexity of these measures are bound by O(Ndw), where
N is the number of pixels, d is the maximum disparity and w is the window size. Regarding the Measures Based
on Non-Binary and Binary Feature Descriptors, computational complexity of these measures is bound by O(Ndw f )
where f is the size of the feature descriptor that determines the computional time of computing the similarity value.455

However, it should be noted that a non-naive implementation of Hamming distance computation of binary features
can be significantly efficient.

Table 3 provides the average computational time measured in milliseconds for the Precomputation phase for one
pixel and Similarity Value Computation phase for one pixel-disparity pair of Il(x, y) and Ir(x − d, y) respectively, for
all similarity measures. The running times are measured on a PC with Intel Core i5 - 4200U CPU@1.6Ghz with 8.0460

GB of RAM over Dataset#2 image pairs using window size of 41 × 41 pixels.

Table 3: Average Computational Time Measured for Precomputation and Similarity Value (SV) Computation phase for the evaluated similarity
measures

Method Name Method Type Size ( f ) Precomp. (msec) SV Comp.(msec)
SSD Local Window Based n/a n/a 0.00405
NCC Local Window Based n/a n/a 0.00410
MI(woPR) Local Window Based n/a n/a 0.0763
MI(wPR) Local Window Based n/a 0.00006 0.0991
LSS Non-Binary Features 80 0.0896 0.6506
HOG Non-Binary Features 36 0.0040 0.1865
SIFT Non-Binary Features 128 0.1417 0.8492
SURF Non-Binary Features 64 0.0021 0.3682
CENSUS Binary Features 8 n/a 0.0196
BRIEF Binary Features 32 0.0032 0.0848
FREAK Binary Features 64 0.1375 0.1517

The measurements show that the local window based measures are more advantageous in terms of computational
cost. Especially the MI measures can be a good selection since they both provide good performance on disparity
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computation and smaller computational cost. Among the measures based on non-binary features, SIFT and LSS need
significant amount of computational time for precomputation of feature vectors. However, HOG and SURF have465

much better computational complexity and smaller feature descriptor size. Considering the measures based on binary
features, FREAK has a significant precomputation time and also a bigger binary feature size. On the other hand,
CENSUS an BRIEF have much better computational time but their performances in disparity computation are not
promising.

6. Conclusion470

In this study, a list of similarity measures that are widely used in the literature are evaluated using two datasets
generated in the scope of this study: a dataset with synthetically altered images from the Middlebury Dataset, and
another dataset collected from a Kinect device.

The experiments conducted using Dataset #1 - Synthetically Altered Middlebury Images provide a good evaluation
of the measures regarding the effect of multi-modality, noise and the local window sizes. MI and HOG are shown to475

have better performance than the rest of the measures for multi-modal imagery where LSS and SIFT yields moderate
results. Among these, SIFT and HOG are shown to have vulnerability to noise. Finally, as the local window sizes
increase, the performance figures also increase, however, at the expense of blurring in the resultant disparity image as
expected. The upward shift in performance is smaller than the difference in the growing window sizes.

Experiments over Kinect image pairs show that the leading measures over the Dataset #1, which are MI, HOG,480

SIFT and LSS, still provide good results. However, SURF and FREAK perform slightly better on this dataset. The
reason is that the Near-Infrared and Visible image pairs indeed provide low multi-modality except for cloth textures
and monitor screens where similar results are obtained on multi-modality experiments over Dataset#1 for FREAK and
SURF regarding low multi-modality levels. On the other hand, when the visual results are analysed the MI measures
are concluded to be more preferable to the rest of the measures since they capture the edge and surface characteristics485

of the objects better.
Another advantage of MI measures is also on the computational complexity. The local window based measures

can directly compute the similarity values before performing the best disparity selection. MI measures are the only
measures that perform well in this category. On the other hand, the measures based on non-binary and binary features
need a precomputation time to compute the feature descriptors for each pixel which requires a significant time espe-490

cially for LSS and SIFT methods. CENSUS does not require this time but its performance for multi-modal imagery
is not promising.

Finally, our results indicate that there is still a significant space for improvement on WTA results of these measures.
However, MI and HOG provides promising results for multi-modal imagery and FREAK, SURF, SIFT and LSS can
be considered as alternatives depending on the multi-modality level and the computational complexity requirements495

of the intended application.
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