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Abstract— Context, which can be defined as the interrelated
conditions in which something exists or occurs, is important
for interpreting the environment, especially in determining
which concept an object belongs to. In this paper, we are
interested in how such context information can be used by
a robot for constructing concepts that correspond to adjectives
in language (i.e., adjective concepts). This is not only important
for robot’s “cognition” but also critical for natural human-robot
communication which requires the robot to understand what
an object means for us in the environment. For this reason, we
are using adjective labels that eight participants assigned for
objects in isolation and for objects in a context.

In the first phase of the trainings, the robot iCub interacts
with a set of objects and learns affordances by applying the
behaviors in its behavior repertoire. After that, we evaluate
appearance and affordance information of objects in isolation
as well as in relation to other objects’ attributes for adjective
concepts using the adjective labels from humans. The results
show that iCub can predict the adjectives of an object in a two-
object environment with a confidence comparable to humans.
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I. INTRODUCTION

Psychologists define concept as “the information associ-
ated with its referent and what the referrer knows about it”
[1]. For example, the concept of an apple, which includes
not only how an apple looks like but also how it tastes, how
it feels etc., is more or less all the information that we know
about apples.

It is becoming widely accepted that background informa-
tion is very crucial for cognitive agents in forming concepts
and concept acquisition processes, as e.g., identified by Yeh
& Barsalou [2]:

“One of the most potent factors in cognition is the
background situation that frames a stimulus (also
called context)... When situations are incorporated
into a cognitive task, processing becomes more
tractable than when situations are ignored... By fo-
cusing on situations, the cognitive system simplifies
many tasks. It becomes easier to recognize objects
and events, to remember relevant information and
skills, to understand language, to solve problems
and perform reasoning, and to predict the actions
of other agents.”

This background information affects the way we perceive
the objects and the events in the environment. For example,
an object that would normally be identified as being tall

would be named short among taller objects. Called relative
attributes in this paper, they are an integral part of the back-
ground information that may place an object into different
categories, or concepts, based on what is available in the
background.

The concept of affordances from J. J. Gibson [3] offers
an ideal solution towards conceptualization since it naturally
brings together perception, action and language. J. J. Gibson
defined affordances as the action possibilities offered by
objects to an agent: Firstly, he argued that organisms infer
possible actions that can be applied on a certain object
directly and without any mental calculation. In addition, he
stated that, while organisms process such possible actions,
they only take into account relevant perceptual data, which
is called as perceptual economy. Finally, Gibson indicated
that affordances are relative, and it is neither defined by
the habitat nor by the organism alone but through their
interactions with the environment.

This article studies how a robot, from its sensorimotor
interactions with the environment, can conceptualize over
affordances, appearance of objects and their immediate sur-
rounding. We propose that the concepts from the appearance
and the affordances of objects correspond to a subset of
adjectives and these concepts are augmented by utilizing the
context knowledge so that they can be more useful while
interacting with humans. Experiments conducted with the
human participants showed that a neighboring object as part
of a spatial context has considerable influence on the value
judgment for a particular object of interest.

As opposed to solely-appearance based learning methods,
we propose a three-stage learning scheme which enables
iCub to attribute adjectives to an object with close resem-
blance to what humans do.

First, iCub learns affordances of objects through interac-
tions by applying the behaviors in its repertoire. Then, using
the learned affordances and by utilizing the context depen-
dent features -relative attributes of two objects-, iCub builds
up more abstract and generic representations as adjectives
for an object. These representations are more in-line with
what humans ascribe to the objects in the environment.

In a previous study [4], we used the appearance and the
affordances of objects for relating them to adjective concepts.
In the current article, we extend this previous study by
including context information as outlined above.



A. Related Work

Gibsonian affordances explains how inherent values and
meanings of things in the environment can be directly
perceived and how this information can be linked to the
action possibilities offered to the agent by its environment.
We follow the affordance formalization proposed by [5]
(see [6, 7] for similar formalizations) who suggests that an
affordance, a is a triple between an entity e, behavior b and
an effect f , i.e.:

a = (e, b, f), (1)

where f is the result of applying b on e. As an example,
if a grasp-with-right-hand behavior is applied on
a blue-ball leading to the grasped effect, the robot
acquires one affordance relation like:

(blue-ball, grasp-with-right-hand, grasped).

After interacting with several objects of, e.g., different col-
ors, the robot can generalize over the acquired affordance
relations and realize, for example, that color of the ball is
not a relevant feature for it to be grasped:

(*-ball, grasp-with-right-hand, grasped).

Moreover, after more interactions, the robot can generalize
over its behaviors, realizing for example that ball objects
can also be grasped with the other hand:

(*-ball, grasp-with-*-hand, grasped).

Recent studies successfully showed that affordance based
robot control and learning architectures are useful in various
scenarios, such as navigation [8], manipulation [9, 10, 11, 12,
13], conceptualization and language [14, 15], planning [11],
imitation and emulation [6, 11, 15], tool use [16, 17, 18] and
vision [15].

II. METHODOLOGY

A. Setup and Perception

We use the humanoid robot iCub [19] to demonstrate and
assess the performance of the models we develop.

iCub perceives its environment through two Kinect cam-
eras, one for perceiving the table and the other for the
humans with the assistance of a motion capture system
(Visualeyez II VZ4000) to detect gaze direction. In order
to simplify perceptual processing, we assumed that iCub’s
interaction workspace is dominated (Figure 1) by an inter-
action table. We use PCL[20] to process raw sensory data.
The table is assumed to be planar and is segmented out as
background. After segmentation, the point cloud is clustered
into objects and the following features extracted from the
point cloud represent an object o (Eq. 1):

• Surface features: surface normals (azimuth and zenith
angles), principal curvatures (min and max), and shape
index. They are represented as a 20-bin histogram in
addition to the minimum, maximum, mean, standard
deviation and variance information.

• Spatial features: bounding box pose (x, y, z, theta),
bounding box dimensions (x, y, z), and object presence.

Fig. 1. Interaction environment is dominated by a table. There are at most
two objects on the table. Kinect on the right of the iCub is dedicated to
the table and tabletop-object processing and the kinect on the left is used
to capture human body.

Fig. 3. The objects used during the context-aware adjective learning.

(a) cups (b) boxes (c) balls (d) cylinders

Fig. 4. The objects used during the affordance learning.

B. Data Collection

iCub interacted with a set of 35 objects of variable shapes
and sizes to learn their affordances. Its behavior repertoire in-
cludes behaviors such as push-left, push-right, push-forward,
pull, top-grasp, side-grasp, say-pass-me. It applied each
behavior on each object to learn the affordance relations (eqn.
1), considering the effects generated on the object, such as
moved-left, moved-right, moved-forward, moved-backward,
grasped, knocked, disappeared, no-change1.

iCub interacted with humans by asking them to describe
an object that it points to. Participants presented with an
adjective set so that they can assign adjectives that feels

1The no-change label means that the applied behavior could not generate
any notable change on the object. For example, when iCub applies say-
pass-me behavior and if there is no human around, this will not generate
any change on the object.



Feature Filtering
ReliefF based feature 

selection

Affordance 
Learning/Prediction

SVM mapping from object to effects

Context Aware 
Learning

SVM mapping to context-aware 
adjectives

Context Feature Extraction
Difference between “perceptual features” of the objects

Perception & Feature Extraction
Tabletop-objects segmentation, identification, 

spatial and surface, human torso and head pose 
feature extraction

C
o

n
te

xt
 a

w
ar

e 
A

d
je

ct
iv

es

ia AVCM  ,:

C
o

n
te

xt
   

  
A

ff
o

rd
an

ce
s

ii bb EOM :

Object of interest Neighbor object Relative features

Object of 
interest

Neighbor 
object

Fig. 2. Overview of the system. iCub perceives the environment and learns the affordances. It learns adjectives based on the affordance predictions and
contextual features.

most intuitive for them. Participants were provided with
enough time till they decide on the adjectives among three
adjective-pairs, namely tall/short, round/edgy, and thin/thick.
We collected 224 instances from 8 participants, three of them
attended to the experiments by physically interacting with the
robot, and five of them presented with the images obtained
during these experiments via Google+ hangouts2. We shared
documents over Google docs with each participant so that
they weren’t distracted from each others’ choices.

III. DEVELOPING CONCEPTS

A. Learning Affordances

Using the effect labels E ∈ E , we train a Support Vector
Machine (SVM) classifier for each behavior bi to learn a
mapping Mbi : O → E from the initial representation of
the objects (i.e., O) to the effect labels (E). The trained
SVMs can be then used to predict the effect (label) Ebk

ol
of a

behavior bk on a novel object ol using the trained mapping
Mbk . Before training SVMs, we use ReliefF feature selec-
tion algorithm [21] to filter out irrelevant features (weight
< 0), and relevant features are passed to the training phase.

B. Context Aware Adjectives

We train SVMs for learning the context-aware adjectives
of objects from their affordances and context related features
(see Fig. 2). We use trained SVMs for affordances (i.e.,
Mb in Sect. III-A) to form a 48-dimensional space, V =
(Êb1

1 , ..., Êb1
8 , ..., Êb6

1 , ..., Êb6
8 ), where Ê

bj
i is the confidence

of behavior bj producing effect Ei on the object o. We train
an SVM for learning the mapping Ma : V → A. After
learning, iCub can predict the adjective labels for an object
in a novel context.

IV. RESULTS

To compare our model, we have also trained a baseline
classifier that maps the combination of pure perceptual
and context information to adjective labels (as opposed to
ours that map affordance and context information). Table I

2Google+ hangout is a unique feature of Plus service of Google Inc.
that facilities video chatting, sharing documents and video at the same time
among a group of people.

TABLE I
ADJECTIVE PREDICTION ACCURACY OF TWO METHODS AND

CONFIDENCE OF HUMAN PARTICIPANTS

Adjectives iCub iCub Humans
Affordance+Context Perceptual+Context

Tall-Short 88.02% 83.85% 73%
Edgy-Round 98.43% 98.43% 93%
Thin-Thick 83.33% 72.08% 65%

shows the results for prediction accuracies of our model, the
baseline classifier and the confidence of participants.

In the round-edgy case, we see that the context dependence
does not have any noticeable influence on the adjective
decision for each methods and also for participants. This
suggests that this pair of adjectives have a strict distinction
for humans, and iCub were able to reach to the same
confidence rate with them. In the case of short/tall adjectives,
we have observed the relatively different preferences among
the participants: for cases when there are two tall objects are
present, some subjects labeled the taller one as “tall”, and
the other one as “short”. Some subjects, when presented with
the same case, labeled both objects as “tall”. Similar cases
also occurred with the thin/thick adjectives.
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Fig. 5. Human and robot prediction accuracies are shown with the mean
and variance information of the confidence of the human across the whole
dataset.

As it is shown in the table II, participants were confident



only when round/edgy assignment is done. For other two
adjectives, thin/thick and tall/short, their confidences varied
with the variance of 13% and 14% respectively. We observed
4 major effects why people tend to give different responses
while deciding on their adjective categories:

A. Effect of spatial context

Participants reflected their need for making a comparison
when they are asked to describe an object at the very first
moments of the experiments.

Fig. 6. Four participants asked With respect to what? and similar questions
when they are presented with a single object at the very first moments of
the experiments.

When participants are shown with the instances and asked
for assigning the adjective labels of the objects, we noted
8 cases when they clearly expressed that they were trying
to remember what they had said about that particular object
when it had already been shown earlier but in a different
context.

(a) Labeled as short (b) Labeled as tall

Fig. 7. Participants influenced by the neighbor object during the adjective
assignments.

B. Effect of object geometry

Results show that we are more stable against the spatial
context while attributing round or edgy adjectives to the
objects. Tall adjective assignment, on the other hand, were
influenced by the ratio between the height and the cross-
section of the object. However, it was observed that this
effect could be overridden by the effect of the context.

However, the effect of dimension-wise ratios can become
dominant features if the relative difference between objects
are not easily recognizable. And it takes longer time for
participants to make decision since the details are less visible.

(a) Labeled as thick-tall-edgy (b) Labeled as thin-tall-edgy

Fig. 9. Dimension-wise ratios of the object can be influential if there is not
noticeable difference between the objects and this multi-object case turns
into single-object case since there is not comparable information to be used.

C. Effect of temporal context

When people are shown with the instances and asked for
assigning the adjective labels of the objects, they tried to
remember what they had said about that particular object
when it was already shown earlier but in a different context.

Some of the participants asked if they are going to be
presented with a taller object when they are shown a tall
object for the first time. This shows that we tend to make
use of temporal information while assessing the attributes of
the objects in the environment.

D. Results on Novel Instances

Table II shows the results on novel context instances that
were not included within the training set. Among them, there
was also a novel object (bulb-box) available.The results show
that our model has developed an adequate representation that
matches with the general preferences of the human partici-
pants. In mostly trivial cases, the model responded with high
confidences (consider the context formed by bulb-box and
green box). In non-trivial cases, the decision of the model
coincided with the majority vote of human participants. For
example, in comparison with bulb-box and the soft box,
nearly half of the human participants attributed the soft box
short. Our model performed likewise with the accuracy of
63 %.

V. CONCLUSION

In a previous study [4], we proposed linking affordances as
well as appearance of objects with adjectives. In the current
article, we proposed promising attempts towards including
context information into learning adjectives. iCub learned the
affordances of the objects and from these, it learned different
types of SVM models for predicting the adjectives for the
objects. Taking these learned adjective labels and how the
affordance and appearance features change in the environ-
ment, iCub learned adjectives in context with a performance
similar to humans.
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(a) Labeled as thick-short-round (b) Labeled as thick-short-round (c) Labeled as thick-tall-round

Fig. 8. Participants influenced by the dimension-wise ratios of an object, but this was overridden by the effect of spatial context.

TABLE II
ADJECTIVE PREDICTIONS FOR NOVEL CONTEXT INSTANCES. FOR EACH OF THE ADJECTIVES, THE FIRST PREDICTION IS FOR THE OBJECT TO THE

LEFT. THE CONFIDENCE OVER THE PREDICTED LABEL DRAWS PARALLELS WITH THE DECISION OF HUMAN PARTICIPANTS.

Items Edgy-Round Short-Tall Thin-Thick

Edgy 99%, Edgy 99% Short 80%,Short 63% Thin 96%, Thick 90%

Edgy 99%, Edgy 99% Short 63%,Tall 65% Thin 82%, Thick 58%

Edgy 99%, Edgy 85% Tall 95%,Short 95% Thick 53%, Thin 65%

Round 97%, Round 95% Tall 89%,Short 93% Thin 92%, Thick 89%

REFERENCES

[1] A.M. Borghi. Object concepts and embodiment: Why sensorimotor
and cognitive processes cannot be separated. La nuova critica,
49(50):90–107, 2007.

[2] W. Yeh and L.W. Barsalou. The situated nature of concepts. The
American journal of psychology, pages 349–384, 2006.

[3] J.J. Gibson. The ecological approach to visual perception. Lawrence
Erlbaum, 1986.

[4] Yuruten O., Uyanik K. F., Caliskan Y., Bozcuoglu A.K., Sahin E.,
and Kalkan S. Learning adjectives and nouns from affordances on the
icub humanoid robot. In Simulation of Adaptive Behavior. Submitted,
2012.
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afford or not to afford: A new formalization of affordances toward
affordance-based robot control. Adaptive Behavior, 15(4):447–472,
2007.

[6] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learn-
ing object affordances: From sensory–motor coordination to imitation.
Robotics, IEEE Tran. on, 24(1):15–26, 2008.

[7] D. Kraft, N. Pugeault, E. Baseski, M. Popovic, D. Kragic, S. Kalkan,
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