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Abstract. This article studies how a robot can learn nouns and ad-
jectives in language. Towards this end, we extended a framework that
enabled robots to learn affordances from its sensorimotor interactions,
to learn nouns and adjectives using labeling from humans. Specifically,
an iCub humanoid robot interacted with a set of objects (each labeled
with a set of adjectives and a noun) and learned to predict the effects (as
labeled with a set of verbs) it can generate on them with its behaviors.
Different from appearance-based studies that directly link the appear-
ances of objects to nouns and adjectives, we first predict the affordances
of an object through a set of Support Vector Machine classifiers which
provided a functional view of the object. Then, we learned the mapping
between these predicted affordance values and nouns and adjectives. We
evaluated and compared a number of different approaches towards the
learning of nouns and adjectives on a small set of novel objects.
The results show that the proposed method provides better generaliza-
tion than the appearance-based approaches towards learning adjectives
whereas, for nouns, the reverse is the case. We conclude that affordances
of objects can be more informative for (a subset of) adjectives describing
objects in language.
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1 Introduction

Humanoid robots are expected to be part of our daily life and to communi-
cate with humans using natural language. In order to accomplish this long-term
goal, such agents should have the capability to perceive, to generalize and also
to communicate about what they perceive and cognize. To have the human-
like perceptual and cognitive abilities, an agent should be able (i) to relate its
symbols or symbolic representations to its internal and external sensorimotor
data/experiences, which is mostly called the symbol grounding problem [1] and
(ii) to conceptualize over raw sensorimotor experiences towards abstract, com-
pact and general representations. Problems (i) and (ii) are two challenges an
embodied agent faces and in this article, we focus on problem (i).



The term concept is defined by psychologists [2] as the information associated
with its referent and what the referrer knows about it. For example, the concept
of an apple is all the information that we know about apples. This concept
includes not only how an apple looks like but also how it tastes, how it feels
etc. The appearance related aspects of objects correspond to a subset of noun
concepts whereas the ones related to their affordances (e.g., edible, small, round)
correspond to a subset of adjective concepts.

Affordances, a concept introduced by J. J. Gibson [3], offers a promising
solution towards symbol grounding since it ties perception, action and language
naturally. J. J. Gibson defined affordances as the action possibilities offered by
objects to an agent: Firstly, he argued that organisms infer possible actions that
can be applied on a certain object directly and without any mental calculation.
In addition, he stated that, while organisms process such possible actions, they
only take into account relevant perceptual data, which is called as perceptual
economy. Finally, Gibson indicated that affordances are relative, and it is neither
defined by the habitat nor by the organism alone but through their interactions
with the habitat.

In our previous studies [4,5], we proposed methods for linking affordances
to object concepts and verb concepts. In this article, we extend these to learn
nouns and adjectives from the affordances of objects. Using a set of Support
Vector Machines, our humanoid robot, iCub, learns the affordances of objects
in the environment by interacting with them. After these interactions, iCub
learns nouns and adjectives either (i) by directly linking appearance to noun
and adjective labels, or (ii) by linking the affordances of objects to noun and
adjective labels. In other words, we have two different approaches (appearance-
based and affordance-based models) for learning nouns and adjectives, which we
compare and evaluate. Later, when shown a novel object, iCub can recognize
the noun and adjectives describing the object.

2 Related Studies

The symbol grounding problem in the scope of noun learning has been studied by
many. For example, Yu and Ballard [6] proposed a system that collects sequences
of images alongside speech. After speech processing and object detection, objects
and nouns inside the given speech are related using a generative correspondence
model. Carbonetto et al. [7] presented a system that splits a given image into
regions and finds a proper mapping between regions and nouns inside the given
dictionary using a probabilistic translation mode similar to a machine translation
problem. On another side, Saunders et al. [8] suggested an interactive approach
to learn lexical semantics by demonstrating how an agent can use heuristics to
learn simple shapes which are presented by a tutor with unrestricted speech.
Their method matches perceptual changes in robot’s sensors with the spoken
words and trains k-nearest neighbor algorithm in order to learn the names of
shapes. In similar studies, Cangelosi et al. [9,10] use neural networks to link
words with behaviours of robots and the extracted visual features.



Based on Gibson’s ideas and observations, Şahin et al. [11] formalized affor-
dances as a triplet (see, e.g., [12,13,14] for similar formalizations):

(o, b, f), (1)

where f is the effect of applying behaviour b on object o. As an example, a
behaviour blift that produces an effect flifted on an object ocup forms an affor-
dance relation (ocup, blift, flifted). Note that an agent would require more of such
relations on different objects and behaviours to learn more general affordance
relations and to conceptualize over its sensorimotor experiences.

During the last decade, similar formalizations of affordances proved to be very
practical with successful applications to domains such as navigation [15], ma-
nipulation [16,17,18,19,20], conceptualization and language [5,4], planning [18],
imitation and emulation [12,18,4], tool use [21,22,13] and vision [4]. A notable
one with a notion of affordances similar to ours is presented by Montesano et
al. [23,24]. Using the data obtained from the interactions with the environment,
they construct a Bayesian network where the correlations between actions, enti-
ties and effects are probabilistically mapped. Such an architecture allows action,
entity and effect information to be separately queried (given the other two in-
formation) and used in various tasks, such as goal emulation.

In this article, our focus is linking affordances with nouns and adjectives. In
addition to directly linking the appearance of objects with nouns and adjectives,
we learn them from the affordances of objects and compare the two approaches.

3 Methodology

3.1 Setup and Perception

We use the humanoid robot iCub to demonstrate and assess the performance
of the models we develop. iCub perceives the environment with a Kinect sensor
and a motion capture system (VisualEyez VZ2). In order to simplify perceptual
processing, we assumed that iCub’s interaction workspace is dominated by an
interaction table. We use PCL[25] to process raw sensory data. The table is
assumed to be planar and is segmented out as background. After segmentation,
the point cloud is clustered into objects and the following features extracted
from the point cloud represent an object o (Eq. 1):

– Surface features: surface normals (azimuth and zenith angles), principal cur-
vatures (min and max), and shape index. They are represented as a 20-bin
histogram in addition to the minimum, maximum, mean, standard deviation
and variance information.

– Spatial features: bounding box pose (x, y, z, theta), bounding box dimensions
(x, y, z), and object presence.

3.2 Data Collection
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Fig. 1. Overview of the system. iCub perceives the environment and learnes the affor-
dances. From either the perceptual data or the affordances, it learns different models
for learning nouns and affordances.

(a) cups (b) boxes

(c) balls (d) cylin-
ders

Fig. 2. The objects in our
dataset.

The robot interacted with a set of 35 objects of vari-
able shapes and sizes, which are assigned the nouns
“cylinder”, “ball”, “cup”, “box” (Fig. 2).

The robot’s behaviour repertoire B contains six be-
haviors (b1, ..., b6 - Eq. 1): push-left, push-right, push-
forward, pull, top-grasp, side-grasp. iCub applies each
behaviour bj on each object oi and observes an effect

f
bj
oi = o′i − oi, where o′i is the set of features extracted

from the object after behaviour bj is applied. After
each interaction epoch, we give an appropriate effect

label Ek ∈ E to the observed effect f
bj
oi , where E can

take values moved-left, moved-right, moved-forward,
moved-backward, grasped, knocked, disappeared, no-

change4. Thus, we have a collection of {oi, bj , E
bj
oi },

including an effect label E
bj
oi for the effect of applying

each behaviour bj to each object oi.

3.3 Learning Affordances

Using the effect labels E ∈ E , we train a Support Vector Machine (SVM) clas-
sifier for each behavior bi to learn a mapping Mbi : O → E from the initial
representation of the objects (i.e., O) to the effect labels (E). The trained SVMs

4 The no-change label means that the applied behavior could not generate any notable
change on the object. For example, iCub cannot properly grasp objects larger than
its hand, hence, the grasp behaviour on large objects do not generate any change.



can be then used to predict the effect (label) Ebk
ol

of a behavior bk on a novel
object ol using the trained mapping Mbk . Before training SVMs, we use Re-
liefF feature selection algorithm [26] and only use the features with important
contribution (weight > 0) to training.

3.4 Adjectives

We train SVMs for learning the adjectives of objects from their affordances (see
Fig. 1). We have six adjectives, i.e., A = {‘edgy ’-‘round ’, ‘short ’-‘tall ’, ‘thin’-
‘thick ’}, for which we require three SVMs (one for each pair). We have the
following three adjective learning models:

– Adjective learning with explicit behavior information (A48-AL):
In the first adjective learning model, for learning adjectives a ∈ A, we use
the trained SVMs for affordances (i.e., Mb in Sect. 3.3) to acquire a 48-

dimensional space, V1 = (Êb1
1 , ..., Êb1

8 , ..., Êb6
1 , ..., Êb6

8 ), where Ê
bj
i is the

confidence of behaviour bj producing effect Ei on the object o. We train an
SVM for learning the mapping M1

a : V1 → A.

– Adjective learning without explicit behavior information (A8-AL):
In the second adjective learning model, for learning adjectives a ∈ A, we use
the trained SVMs for affordances to acquire an 8-dimensional affordance
vector, V2 = (p(E1), ..., p(E8)), where p(Ei) is the maximum SVM confidence
of a behaviour bj leading to the effect Ei on object o. From V2, we train an
SVM for learning the mapping M2

a : V2 → A.

– Simple adjective learning (SAL):
In the third adjective learning model, we learn M3

a : O → A directly from
the appearance of the objects.

After learning, iCub can predict the noun and adjective labels for a novel
object (Fig. 3).

3.5 Nouns

We train one SVM for nouns N = {‘ball’, ‘cylinder’, ‘box’, ‘cup’}, for which
we have 413 instances. Similar to adjectives, we have three models:

– Noun learning with explicit behavior information (A48-NL):
Similar to A48-AL, we train an SVM for learning the mappingM1

n : V1 → N .

– Noun learning without explicit behavior information (A8-NL):
Similar to A8-AL, we train an SVM for learning the mappingM2

n : V2 → N .

– Simple noun learning (SNL):
Similar to SAL, we train an SVM for learning the mapping M3

n : O → N
directly from the appearance of the objects.



Fig. 3. After learning nouns and adjectives, iCub can refer to an object with its higher
level representations or understand what is meant if such representations are used by
a human.

4 Results

The prediction accuracy of the trained SVMs that map each behaviour bi on an
object to an effect label (i.e., Mbi : O → E) is as follows: 90% for top-grasp,
100% for side-grasp, 96% for pull, 100% for push-forward, 92% for push-left and
96% for push-right.

4.1 Results on Adjectives

Table 1. The dependence between adjectives and affordances for the model A48-AL
(M1

a). TG: Top Grasp, SG: Side Grasp, PR: Push Right, PL: Push Left, PF: Push
Forward, PB: Pull. For each behavior, there are eight effect categories: a: Moved Right,
b: Moved Left, c: Moved Forward, d: Pulled, e: Knocked, f : No Change g: Grasped, h:
Disappeared.

Adjective TG SG PR PL PF PB
abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh

Edgy -----+-- -----**- *---**-+ -*--**-+ ---***-+ ---*++-+

Round -----**- -----+-- *---+*-+ -*--+*-+ ---**+-* ---**+-*

Short -----**- -----+-- +---**-+ -+--**-+ ---+**-+ ---+*+-+

Tall -----**- -----**- *---+*-+ -*--+*-+ ---*++-* ---*++-*

Thin -----**- -----**- *---+*-+ -*--+*-+ ---*+*-+ ----++-+

Thick -----+-- -----**- *---**-* -*--**-* ---**+-* ---+*+-*

Using Robust Growing Neural Gas [27], we clustered the types of dependence
between each adjective and the effects of the behaviours into Consistently Small
(-), Consistently Large (+) and Highly Variant (*). These dependencies allow
iCub to relate adjectives with what it can and cannot do with them. Table 1
shows these dependencies for the model A48-AL (M1

a) introduced in Sect. 3.4.
We see from the table what behaviours can consistently generate which effects
on which types of objects (specified with their adjectives). For example, with



a consistently large probability, the robot would generate no change effect on
edgy or thick objects when top grasp behavior was applied. Furthermore, the
short and tall objects show a clear distinction in response to pushing behaviors
(tall objects have a high probability to be knocked while short objects simply
get pushed).

Table 2. The dependence between adjec-
tives and affordances for the model A8-
AL (M2

a). MR: Moved Right, ML: Moved
Left, MF: Moved Forward, P: Pulled, K:
Knocked, NC: No Change, G: Grasped, D:
Disappeared.

Adjective MR ML MF P K NC G D

Edgy ∗ ∗ ∗ ∗ + + ∗ ∗
Round ∗ ∗ ∗ ∗ ∗ + + +
Short ∗ ∗ ∗ ∗ ∗ + + +
Tall − − − − + + + +
Thin ∗ + + + + + + +
Thick ∗ ∗ ∗ ∗ ∗ ∗ + +

The dependencies for the no-
explicit-behavior model A8-AL (M2

a)
is in Table 2. We see from the ta-
ble that round objects have a con-
sistently high probability to generate
disappeared effect, whereas edgy ob-
jects do not have such consistency.
Furthermore, tall objects have consis-
tently low probabilities in obtaining
moved-left, -right, -forward or pulled
effects. Almost all effects can be gen-
erated on thin objects with consis-
tently high probability.

The comparison between the dif-
ferent adjective learning methods is
displayed in Table 3, which displays
the average 5-fold cross-validation accuracies. We see that the explicit-behavior
model (A48-AL) performs better than A8-AL and SAL models. The reason that
A8-AL is worse than the other methods is eminent in Table 2, where we see
that different adjective categories end up with similar descriptor vectors, losing
distinctiveness. On the other hand, the A48-AL model that has learned adjec-
tives from the affordances of objects performs better than directly learning SAL
model.

Table 3. Avg. prediction results for the
three adjective models in Sect. 3.4.

A48-AL A8-AL SAL
M1

a M2
a M3

a

Edgy-Round 87% 72% 89%
Short-Tall 93% 95% 89%
Thin-Thick 95% 72% 91%

An important point is whether ad-
jectives should include explicit be-
haviour information (i.e., A48-AL
vs. A8-AL). Theoretically, the per-
formance of these models should
converge while one-to-one, unique
behavior-to-effect relations dominate
the set of known affordances. In such
cases, the behavior information would be redundant. On the other hand, with a
behavior repertoire that may pose many-to-one-effect mappings, behavior infor-
mation must be taken into account to obtain more distinguishable adjectives.

Results on Adjectives of Novel Objects Table 4 shows the predicted adjec-
tives from the different models on novel objects. We see that, for adjectives,M1

a

is better in naming adjectives than M2
a. For example, M2

a mis-classifies object-
5 as edgy, object-7 as thin and object-1 as thick whereas M1

a correctly names
them. On some objects (e.g., object-3), where there are disagreements between



Table 4. Predicted adjectives for novel objects using 3 different models (bold labels
denote correct classifications).

ID Object A48-AL A8-AL SAL
M1

a M2
a M3

a

1
edgy (54 %) edgy (89 %) edgy (89 %)
short (97 %) short (91 %) short (55 %)
thin (59 %) thick (52 %) thin (52 %)

2
round (77 %) round (90 %) edgy (79 %)
short (77 %) short (91 %) short (42 %)
thin (89 %) thin (67 %) thin 67 %

3
edgy (63 %) round (72 %) edgy (64 %)
short (94 %) short (92 %) tall (67 %)
thin (96 %) thin (72 %) thin 84 %

4
round (84 %) edgy (%94) round (77 %)
short (98 %) short (% 87) short (68%)
thick (91 %) thin (% 68) thin ( 62 %)

5
round (84 %) edgy (% 81) round (89 %)
short (97 %) short (% 93) short (67 %)
thick (95 %) thick (% 59) thick (58 %)

6
edgy (84 %) edgy (79 %) edgy (79 %)
short (98 %) short (80 %) tall (45 %)
thin (92 %) thin (79 %) thick (62 %)

7
edgy (62 %) edgy (52 %) round ( 84 %)
short (98 %) short (93 %) short (54 %)
thick (78 %) thin ( 53 % ) thick (68 %)

8
round (72 %) round (69 %) edgy (89 %)
short (98 %) short (95 %) short (67 %)
thick (79 %) thick (64 %) thick (52 %)

the models, correctness cannot be evaluated due to the complexity of the object.
If we look at the direct mapping from objects’ appearance to adjectives (M3

a),
we see that it misclassifies object-7 as round, object-6 as tall and objects 2 and
8 as edgy.

4.2 Results on Nouns

For the three models trained on nouns (Sect. 3.5), we get the following 5-fold
cross-validation accuracies: A48-NL: 87.5%, A8-NL: 78.1% and SNL: 94%. We see
that, unlike the case in adjectives, directly learning the mapping from appearance
to nouns performs better than using the affordances of objects. This suggests
that the affordances of the objects (used in our experiments) are less descriptive
for the noun labels we have used. The dependency results for nouns (similar to
the ones in adjectives shown in Tables 1 and 2) are not provided for the sake of
space.



Results on Nouns of Novel Objects Table 5 shows the results obtained on
novel objects. Unlike the case in adjectives, the simple learner (SNL) significantly
outperforms the A48-NL and A8-NL models. Hence, we conclude that the set of
nouns (cup, cylinder, box, ball) we have are more of appearance-based.

5 Conclusion
Table 5. Noun prediction for novel objects using
3 different models (see Table 4 for pictures of the
objects).

ID A48-NL A8-NL SNL

1 box (74 %) cylinder (42 %) box (97 %)

2 ball (83 %) ball (44 %) ball (97 %)

3 cylinder (87 %) cylinder (39 %) cylinder (95 %)

4 box (94 %) cylinder (38 %) cylinder (86 %)

5 box (89 %) cylinder (35 %) box (94 %)

6 cup (89 %) cylinder (44 %) box (46 %)

7 box (89 %) box (32 %) box (93 %)

8 cup (89 %) cylinder (44 %) cup (98 %)

We proposed linking affor-
dances with nouns and ad-
jectives. Using its interactions
with the objects, iCub learned
the affordances of the objects
and from these, built differ-
ent types of SVM models for
predicting the nouns and the
adjectives for the objects. We
compared the results of learn-
ing nouns and adjectives with
classifiers that directly try to
link nouns and adjectives with the appearances of objects.

We showed that, by using learned affordances, iCub can predict adjectives
with more accuracy than the direct mode. However, for the nouns, direct meth-
ods are better. This suggests that a subset of adjectives describing objects in a
language can be learned from the affordances of objects. We also demonstrated
that explicit behavior information in learning adjectives can provide better rep-
resentations. It is important to note that these findings are subject to the sen-
sorimotor limitations of the robot, which are maintained by the number and the
quality of the behaviors and the properties of the perceptual system. A sample
video footage can be viewed at http://youtu.be/DxLFZseasYA

6 Acknowledgements

This work is partially funded by the EU project ROSSI (FP7-ICT-216125) and
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